Biomolecular computation with molecular beacons for quantitative analysis of target nucleic acids

نویسندگان

  • Hee-Woong Lim
  • Seung Hwan Lee
  • Kyung-Ae Yang
  • Suk-In Yoo
  • Tai Hyun Park
  • Byoung-Tak Zhang
چکیده

Molecular beacons are efficient and useful tools for quantitative detection of specific target nucleic acids. Thanks to their simple protocol, molecular beacons have great potential as substrates for biomolecular computing. Here we present a molecular beacon-based biomolecular computing method for quantitative detection and analysis of target nucleic acids. Whereas the conventional quantitative assays using fluorescent dyes have been designed for single target detection or multiplexed detection, the proposed method enables us not only to detect multiple targets but also to compute their quantitative information by weighted-sum of the targets. The detection and computation are performed on a molecular level simultaneously, and the outputs are detected as fluorescence signals. Experimental results show the feasibility and effectiveness of our weighted detection and linear combination method using molecular beacons. Our method can serve as a primitive operation of molecular pattern analysis, and we demonstrate successful binary classifications of molecular patterns made of synthetic oligonucleotide DNA molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets.

Molecular beacons are sensitive fluorescent probes hybridizing selectively to designated DNA and RNA targets. They have recently become practical tools for quantitative real-time monitoring of single-stranded nucleic acids. Here, we comparatively study the performance of a variety of such probes, stemless and stem-containing DNA and PNA (peptide nucleic acid) beacons, in Tris-buffer solutions c...

متن کامل

Evaluation of microfluidic biosensor development using microscopic analysis of molecular beacon hybridization kinetics.

Molecular beacons, oligonucleotide probes that fluoresce upon hybridization to a target nucleic acid, can be used in microfluidic devices to detect and quantify nucleic acids in solution as well as inside bacterial cells. Three essential steps towards the development of such devices as integrated microfluidic biosensors using molecular beacons were investigated in the present study. First, expe...

متن کامل

Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells.

DNA and peptide nucleic acid (PNA) molecular beacons were successfully used to detect rRNA in solution. In addition, PNA molecular beacon hybridizations were found to be useful for the quantification of rRNA: hybridization signals increased in a linear fashion with the 16S rRNA concentrations used in this experiment (between 0.39 and 25 nM) in the presence of 50 nM PNA MB. DNA and PNA molecular...

متن کامل

In vitro selection of molecular beacons.

While molecular beacons are primarily known as biosensors for the detection of nucleic acids, it has proven possible to adapt other nucleic acid binding species (aptamers) to function in a manner similar to molecular beacons, yielding fluorescent signals only in the presence of a cognate ligand. Unfortunately, engineering aptamer beacons requires a detailed knowledge of aptamer sequence and str...

متن کامل

Hybridization kinetics and thermodynamics of molecular beacons.

Molecular beacons are increasingly being used in many applications involving nucleic acid detection and quantification. The stem-loop structure of molecular beacons provides a competing reaction for probe-target hybridization that serves to increase probe specificity, which is particularly useful when single-base discrimination is desired. To fully realize the potential of molecular beacons, it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio Systems

دوره 111 1  شماره 

صفحات  -

تاریخ انتشار 2013